

談台電公司輸變電建設

文、圖/朱瑞墉

輸變電系統

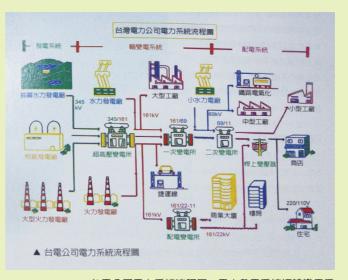
電力系統是由發電、輸電與配電系統 結合而成,最理想的發、輸、配電系統, 是電廠能夠近距離供應用電。一方面減少 因供雷距離而產生的雷力耗損;一方面能 夠減少複雜的電力調度。然而電廠的設置 受限於地理環境、都會市區及發電特性, 往往需建置於人口較為稀少之處,如火力、

核能發電廠多建於海邊、水力發電廠多在 山林深處, 距離主要用電端甚遠, 為將電 力輸送至各用電戶,輸電系統便成為電廠 與用戶間重要的傳輸。

電需要長距離的輸送,由於電力之大 小與其電壓及電流之乘積成正比,若把電 壓提高則線路損失可相對減少,因此提高 輸電電壓可減少電流而降低線路損失及電

壓降,通常將發電機之電壓經升壓器加以 提高,再送到用電較多之都市郊外,經變 壓器壓送到用戶電之地區配電。

台電公司之輸電線路依電壓級別區 分,可分為下列3種:34萬5仟伏特 (345kV) 輸電線,又稱超高壓輸電線,主 要用於大電量、長距離南北輸送,在臺灣 本島上目前有三路南北輸送互聯的骨幹網 路; 16萬1仟伏 (161kV) 特高壓輸電線, 又稱一次輸電線;6萬9仟伏特(69kV) 高壓輸電線,又稱二次輸電線。新建由輸 變電工程處負責,運轉維護由供電處管 轄。而配電網目前採用 11kV 及 22kV 電 壓,是配電處管轄,不在本文所討論範圍。



三任處長,曾完成東西連絡線、 天峰線及第一條南北 345kV 超 高壓輸電路等工程。

輸電線的歷史

蔡瑞唐協理是雲林北港人,父親為名 醫師,醫術高超門庭若市,蔡瑞唐為其獨 生子,在富裕的環境中成長。有志於工業 建設事業,因此赴日就讀日本大學工學部 電氣科(為台電公司前陳董事長蘭皋的同 校同學)。1933年畢業返台,進入嘉義 電燈株式社會服務,該會社發電部門不讓 台灣人插手(台電社亦是同樣情形),蔡 瑞唐乃在線路部門擔任設計及建設工作, 該會社的很多線路都是他親手設計的; 1940年被台電株式會社合併,他仍在線 路課工作;民國34年台灣光復,同年10 月自日本人手中接管台電臺北區的電務工

▲ 台電公司電力系統流程圖,電由發電系統經輸變電系 統,再經配電系統送至用戶。

January 2016 **65 64** M YUAN MAGAZINE

▲ 第七輸變電計劃中,此鐵塔為全台最重的高壓鐵塔。

作;民國 36 年 1 月由日籍原線路課長河瀨 秀的推薦,蔡瑞唐接任發電處線路課長(處 長為孫資政運璿),成為台電公司的線路 權威;民國 39 年 9 月 5 日台電成立東西線 工程處,由輸電線經驗豐富的線路課長蔡 瑞唐兼任該工程處主任。該路線沿途均是 崇山峻嶺、峭壁干仞,所經之地最高處達 2,850 公尺;在民國 40 年 11 月底完成東 西連絡線(西起萬大發電廠,東至銅門發 電廠,全長 45 公里,以 66kV 電壓輸送, 現稱舊東西輸電線),在線路工程貢獻極 大,他因公勛彪炳獲頒七等景星勛章一座。

民國 40 年 1 月台電成立天峰線工程處 (天輪至霧峰),蔡瑞唐兼任天峰線工程處

主任; 次年8月該線路(154kV)竣工;民 國 42 年 5 月於臺北景美成立線路工程處, 他兼任主任,興建各相關的輸電線路。這 年起政府開始進行每4年為一期經濟建設 計劃,台電亦配合實施電源開發計劃,其 計劃下需大量興辦輸配電工程,為統一事 權不再分別設立各線路工程處;於民國 43 年4月該丁程處合併於輸配電丁程處,他 奉派為輸配電工程處副處長,專責全臺輸 配電工程的設計及施工,全力進行擴建輸 電系統工程, 並分期提升電壓等級, 先將 二次系統 11kV 及 33kV 提升到 34.5kV; 民國 48 年 7 月他再兼任特高壓線分處 (在 豐原)主任;民國55年11月起開始規劃 第一條南北 345kV 超高壓輸電路及相關超 高壓變電所興建事宜,全長330公里,於 民國 63 年 10 月完成,後台電再完成第二 條及第三條南北 345kV 超高壓輸電路;民 國 51 年 6 月升任輸配電工程處第三任處 長,他是第一位以線路專家身份内升,前 兩任處長(紐其如、徐正方)都是由別處調 來。該處後改稱輸變電工程處,肩負了全 臺輸變電網路建設的艱鉅任務,以完成電 力建設作為經濟發展的基礎;他於民國 58 年7月升任協理。

台電公司輸變電計畫表

計劃名稱	計畫期限(民國)	工程量	預算 (億元)
第一輸變電計畫	61.07~65.06 (4年)	線路: 2,027 回線公里 變電: 10,180 干仟伏安	116
第二輸變電計畫	66.07-71.06(5年)	線路: 3,429 回線公里 變電: 19,626 干仟伏安	394
第三輸變電計畫	73.07-77.06(4年)	線路: 3,061 回線公里 變電: 14,670 干仟伏安	404
第四輸變電計畫	79.07~85.06(6年)	線路: 3,206 回線公里 變電: 21,577 干仟伏安	7 4
第五輸變電計畫	85.07~90.06(5年)	線路: 2,459 回線公里 變電: 25,955 干仟伏安	1,226
第六輸變電計畫	90.07~98.12 (8.5年)	線路: 4,587 回線公里 變電: 69,235 干仟伏安	3,266
第七輸變電計畫	99.01~110.12(12年)	線路:1,966 回線公里 變電:18,554 干仟伏安	2,369

註: 1. 政府會計年度自民國 61 年起改會計年度 7月-6月 2. 政府會計年度自民國 89 年起改會計年度 1月-12月

台電輸變電計畫

1920年代臺灣各地的電網各自獨立, 自大觀發電廠完成,臺灣從 1934年7月第 一條 154kV 南北幹線加入系統。光復後輸 配電計劃是逐年編列預算,會計年度結束 時辦理結算,未完成工程預算歸零,於次 年重編預算繼續執行。因工程有連續性, 多數的工程需歷時數年才能完成,為簡化 繁瑣的會計作業,自民國 61年7月起將數 年内可能進行之工程彙集為一大計劃,是 以有第一輸配電計劃之誕生。後來為與配 電工程有所區隔,就改稱「輸變電計畫」。

民國 99 年台電公司為配合政府推動愛 台 12 項建設、產業再造、全球連接新藍圖 等經濟政策之用電需求,及因應區域負載

▲ 新建的板橋新民屋内式超高壓變電所。

January 2016 67

(用電)成長,繼第六輸變電計畫之後續推 第七輸變電計畫,以持續進行必要性的輸 變電新擴建工程,適時提供用戶安全可靠 之電力,配合重大經建用電及滿足國計民 生的需求。第七輸變電計畫總投資費用約 新台幣 2.389 億元,原執行期間自民國 99 年1月至104年12月底止,共計6年, 該計劃民國99年2月9日奉行政院核定, 並於同年12月9日奉行政院核定為國家重 大建設。後於民國 102 年配合台電公司經 營改造及經濟負載需求變化,辦理計劃變 更,投資總額修正為 2.369 億元,執行期 間延長至民國 110 年 12 月。該輸變電計畫 之主要目的為改善供電瓶頸及重載供電設 備,引接新增電源(含再生能源)併網,滿 足民生用電自然成長及大用戶用電需求, 並提升輸電網路智慧化效能。預計新擴建

變電所 103 所,裝設 18,554 干伏安 (MVA), 新擴建輸電線 1,966 回線公里 (CKM)。

推行工程新法 降低環境衝擊

臺灣社會經濟高度發展、都會區集中, 民衆更求電若渴。台電公司除將發電設備、 輸電系統的更新及維修視為重點工作外, 施工工法的改善、工時期間的掌握,都心 須考量民衆感受,並致力減少對生活環境 的衝擊。

近年來輸變電系統積極執行都會區電 纜線路地下化,以改善市容景觀。早期, 輸變電系統在實施電纜地下化, 多以明挖 覆蓋工法,此工法對鄰近地區的影響較大。 94年以後,台電公司積極推行冤開挖工 法,降低對地面交通、地下水流的影響。

配合重大經建用電需求第七輸變電計

筆者拜訪台電公司輸變電工程處的顏德忠處長

▲ 第七輸變電計劃之電纜線路潛盾洞道歷程。

▲ 臺澎海底纜線在岸邊的儲纜設備

劃之工程,大都採行冤開挖工法,例如: 「大林一高港 345kV 電纜線路潛盾洞道 暨大林、南丁冷卻機房統包丁程」,就是 屬於第七輸變電計畫之一,係配合大林電 廠更新計畫,規劃 345kV 地下電纜四回 線引線,由大林電廠經南工 P/S 引接至高 港 E/5,採内徑 5.7 公尺之潛盾洞道,長 度合計 12.4 公里。該標案為國内受首次 採用雙井發進地中接合工法,可有效縮短 施工期程,並降低交通衝擊。該標案完工 供電後可降低替代燃料成本,提升高雄地 **區系統穩定度及** 沒電能力。

第七輸變電計畫從民國 99 年立案至 民國 104 年 12 月,輸工處是使命必達徹 底完成,該計劃已完成的工程有:1.竹園 一峨嵋 161kv 、2. 峨嵋─龍松 161kv 、3. 中 壢─青埔 161kv、4. 高港─ 万甲 345kv、 5. 汐止一核一161kv、6. 后里一潭寶 161kv、7. 彰濱─彰林 161kv 等,電纜地 下化潛盾工程附屬機電工程皆已完工。板 橋新明超高壓變電所也已完成,而臺北大 安超高壓變電所採多目標使用,將來部分 樓層將可提供商業使用。尚有臺澎海底纜 線仍繼續施工進行中,將來一旦完工,臺 灣本島電力可經板橋由海底纜線與澎湖連 接,除降低離島供電成本外,更可提升供 電穩定度。此外澎湖相當適合發展海上風 力發電,估計澎湖海域可以設置 176 座海 上風力發電機,完成後可創造出一年約65 億度的發電量,台電期望海底電纜工程早 日完成,協助加速澎湖各項建設,應可共 創台電、縣府、民衆三贏局面。 🔞